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TEMPERATURE DISTRIBUTION IN ZONE SURROUNDING WELL HOLE BOTTOM 

DURING THERMOCHEMICAL TREATMENT 

G. A. Gamidov, V. I. Mamedkerimov, 
I. A. Nasrullaev, and T. I. Salimov 

UDC 622.276.038:522.5 

The temperature distribution in the hole bottom zone of a formation during thermo- 
chemical treatment is analyzed, taking into account the heat losses through the formation 
roof and floor. The characteristic parameters of the temperature propagation 
zones are determined. 

Thermochemical methods for acting upon formations are most effective for removing heavy 
hydrocarbon components from the hole bottom zone and increasing the inflow of crude (parti- 
cularly high-viscosity crude) to wells [1-6]. 

The thermochemical treatment that will be considered here involves the exothermal reac- 
tion of magnesium with an acid and is carried out by two technological methods: conduct of 
the reaction in a special chamber at the hole bottom and directly in the formation itself. 
The first technique entails round-trip operations and possible damage to the lower portion of 
the string as a result of extensive acid corrosion and is therefore ineffective in comparison 
with the methods proposed in [7, 8]. These papers described experimental studies of intra- 
formation thermochemical treatment that resulted in transport of the heat source directly 
into the formation. A solution of starch-based powdered or granulated magnesium was pumped 
into the formation, followed by a hydrochloric acid solution. 

When magnesium mixes with an acid in the percolation zone of a formation, there is an 
exothermal reaction that liberates a large amount of heat (approximately 4200 kcal of heat is 
released in the combustion of 1 kg of magnesium, and the temperature is raised to 200-250~ 
depending on the magnesium concentration), and the surrounding material is heated. This 
removes waxes, asphalts, and tars from the hole bottom zone and substantially improves forma- 
tion conductivity (laboratory studies have shown that permeability increases by a factor of 
1.5-2.0 after thermochemical treatment), which leads to a rise in well production rate. 
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It is necessary to establish the extent of the heat propagation zone in order to cor- 
rectly implement the process and determine the effectiveness with which productive formations 
can be acted upon and developed. For this purpose, the present paper considers the tempera- 
ture distribution in the formation zone adjoining the hole bottom during different character- 
istic periods after the start of heat treatment, taking into account the heat losses through 
the roof and floor of the productive formation, and considers determination of the effective 
radius of the temperature propagation zone. 

The temperature distribution in a formation is described for the case of a moving com- 
bustion front by the solution of the following system of differential equations [8, 9]: 

a ( auo~ a~Uo i aUo r + - - + f ( , ' ,  z, t ) -  o 
Or , - ~ r  ] az 2 a~ at 

1 Or { r  OUII @ O2UI___ 1 OU1 t > 0 .  
r Or \ --&-r/ az 2 a~ at ' 

(i) 

Since the temperature fields are symmetric relative to the z = 0 plane, we will consider the 
temperature distribution on this plane. The problem is solved with the following initial 
and boundary conditions: 

U O(f, z, t ) : =  U l ( r ,  z, t )when t - - O ,  

OUo (r, z, t) 

Or 

U o(r,  z, t ) =  U l ( r  , z, t); ~ 0 - -  - -  

- -  0 when Z : O, 

OUo OU1 h 
- -  ~'1 when z = 

Oz Oz 2 

U l ( r ,  z, t) = 0 when [ Z [ ~  00, 

OU o(r, z, t) =- 0 when r = r o ,  
Oz 

U O(r, z, t) = U l ( r ,  z, t) when r - - > ~  �9 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Solution of problem (1)-(7) requires that one know the function f(r, z, t) in the 
first equation of system (i). It is usually specified in the form of a generalized function 
for simplicity, Precisely this sort of form was utilized in solving a similar problem in 

[9, i0] .  

We will set about solving the problem in a somewhat different manner, by eliminating 
the singularity in the first equation of system (i) and replacing the influence of the func- 
tion f(r, z, t) with a separate condition on the heat liberation front: 

I( ( 2 3 / ~  exp 4a~t Io 2a~t .. 0 ~ z <~ . (8 )  

After making the substitutions U 0 
(i) for f(r, z, t) = 0. 

Hankel transformation [ii] for the variable reduces this system to the form: 

O~-Vi --P~Vi= 1 OVi ( i = 0 , 1 ) .  
2 OZ 2 ai Ot 

The Hankel transform of the function U 0 

= U0 (~ + V0, U I =V lwe solve the system of equations 

(9) 

(0) after replacement of z by z - z 0 has the form: 
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Fig. 1. Delivery rate for 2% solution Q (cm3/sec) as a function of pressure 
differential AP 0 (MPa) at different temperatures. I) T = 20; 2) 30; 3) 40; 
4) 50; 5) 60~ 

F i g .  2. Change in  r e l a t i v e  t e m p e r a t u r e  U in  l i n e a r  model w i t h  e x o t h e r m a l  
r e a c t i o n .  1) F = 0 .075 ;  2) 0 .144 ;  3) 0 .220 ;  4) 0 .290 ;  5) 0 .362 .  

0~ ~ -- q exp ( [z--z0t 2 a~tpz't d0 (top). 

We carry out Laplace transformation [ii] for t and thus reduces Eq. 
ferential equation with the following solutions: 

~0 = A exp (-- goz) ~ B exp (g0z), V1 = C exp (-- glz), 

(i0) 

(9) to an ordinary dif- 

(il) 

where 

gi = ~ Oz _/ s 
2 az 

Utilizing the inversion formula in [ii] for the Hankel transform gives us 

L V o = i [  q J~176 e x p ( - - l z - - z ~ 1 7 6  +Ae•176176176  
0 2~a~ go (12)  

LU1 = .t C exp (-- glz) Jo (rp) pdp, (13)  
0 

f o r  t h e  L a p l a c e  t r a n s f o r m s  of  t h e  t e m p e r a t u r e  d i s t r i b u t i o n  f u n c t i o n s .  

C o n d i t i o n s  ( 2 ) - ( 4 )  o b v i o u s l y  remain  unchanged  f o r  t h e _ L a p l a c e  t r a n s f o r m s  o f  t h e s e  f u n c -  
t i o n s .  Condition (4) was already utilized in determining V. We employ conditions (2)-(3) in 
(12)-(13) to obtain a system of linear algebraic equations in A, B, and C. Solution of the 
resultant system determines these coefficients, and Eqs. (12)-(13) then take the form: 

LU o -- q ~ [exp (-- [z - -  zolgo)-~ },ego ch go (h~--Zo)--t-%lgl sh go(hl--z~,) 
2ua~ ~ %ego sh gob1 -t-" ~igi ch goh t 

x 

• exp (--goz)] H- O~ogo - -  )hgO ch goZo 
)~ogo sh goh 1 -t- s ch goh 1 

X exp ( - -  ] h - -  z]go) Jo(rop) Jo (rp) pdp, 
go 

q ~'~ 2s ch gz 
LU 1 1 

2~a~ ~ ~ogo shgoht-t-~lgl chgoh t 
X 

X 

(14) 

• exp (-- ]z - -  htl ga) Jo (top) Jo (rp) 9dp. 
go 

(15 )  
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Switching directly back to the originals in Eqs. (14)-(15) leads to complex expressions, 
and we will therefore not discuss this topic but will consider special cases instead. 

Since go = gl when a 0 = a I, Eqs. (14)-(15) are materially simplified and it is easy to 
switch to the original. The original of the function in (14) then acquires the following 
simple form: 

Uo--  q .exp(  r2-{- r~ fro '] (2c+ / • 

where 

{ [ (nh+z--Zo)Z i [(nh@z--zo)2 ]} 
• ~7 ~Inl exp 4a2t + exp 4a2o t , (16)  

~o § ~1 

As was noted above, Eq. (i0) and hence Eq. (16) were written for the case in which the heat 
source lies on the plane z - z 0. The heat source occupies the entire thickness of the forma- 
tion in our problem. We therefore integrate over z from z = 0 to z = h I = h/2 and obtain: 

U* = ~ e• ( r2 q-r2 rr---A-~ 
4.,,0, ,,oo ),o ( ; • 

~ ( nh+h~--z nh+h,+z ) 
X n=--~ ~ (~lnl err 2_Va2__ ~_ + e r r  2 l / a  T , . 

(17) 

The heat source is moving at a specified velocity; its power varies as a function of r 0 
and hence of time. 

2 + kt and q = q(t) and integrate over time in (17) by superposition If we assume r0 2 = r w 
and by changing the variable of integration, we obtain the final expression 

U(r, z, t)=-'6 iq(t-~) ( r~+r~+k(t--x) (r-Vr 2+k(t_z))Ier 2-Va2-~Th--z h+z 4a2---------~exp - -  • I o ~- err 2~/---- ~ + 

~--2 (~'n[ ( err tlh _J[_ h l _  Z nh _ hl .jU Z nh _Ju hl _~_ z F i b _ h i _ z ) ?  (18 )  
~=1 2 ] / a ~  erf ~ 2 + err er[ _ _  dT 

�9 , 2]/aoT 2]/a-~-T 2]/ao2T �9 -' 

Assuming q = const and X 0 = Xl (a~ = a~ in Eq. (18) gives us the corresponding formula 

from [12]. 

The series in Eq. (18) converges very rapidly, especially for short times. Making 
calculations with Eq. (18) consequently presents no difficulties for specified q(t) and k. 

We will now consider the specific case in which the magnesium concentration distribution 
over r is specified. Finding the distribution of magnesium and other heat-liberating mater- 
ials is one of the main problems. Despite the fact that there have been a few studies on 
this topic, the question remains unresolved. The most reliable concentration determination 
method is that based on heat evolution capacity. 

Experiments conducted with a linear model have shown that the temperature and magnesium 
concentration are linearly dependent (Fig. i) and that the heat-liberating reaction takes 
place almost instantaneously. 

Preliminary calculations made with (18) for the short times indicated above shows that 
the thermal front lags the heat source and the leakage into the environment is negligible. 
It is therefore best from the practical standpoint to study the temperature distribution 
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Fig. 3. Relative temperatureU as a function of distance r (m): I) 
t = 0; 2) i; 3) i0; 4) 50; 5) i00; 6) 200 h. 

Fig. 4. Change in relative temperature as a function of time f h): , 

i) r = 0; 2) 0.2; 3) 0.4; 4) 0.6; 5) 0.8; 6) 1.0. 

after the reaction terminates. This requires that we know the initial temperature distribu- 
tion. However, the original temperature distribution around the well (at the conclusion of 
the reaction) is unknown. We only have the temperature distribution curves for the magnesium 
concentrations in the starch solution from the linear model at the conclusion of the reac- 
tion (see Fig. 2). These curves are also taken as the baseline for the radial temperature 
distribution, where the problem is more simply solved, e.g., by the incomplete concentrated 
capacity procedure. The differential equations for the temperature distribution have the 
following form here [9, Ii]: 

1 0 {r  OU. )  OUo _ 1 OU. h 
r Or ~, Or ] + e - O z  a2o o r '  z = - 2  ' 

02U1 _ 1 OU ~ , O < z < oo, ~z -- 2~'1 
Oz z a~ O t ~,oh 

(19)  

The condition near the well bottom (3) can be taken with sufficient accuracy to be: 

OUo(r, z, t) = 0 as r-+O, (20)  
Or 

and c o n d i t i o n s  (7) remain  in  f o r c e .  The i n i t i a l  c o n d i t i o n  i s  assumed to  be: 

g O(r, z, t) =(1)(r) when t =  O, z = O. (21)  

We solve problem (19)-(21) by first moving the coordinate origin to the z = h/2 plane 
on the coordinate system adopted. The solution of the problem yielded by the procedure in 
question on the z = 0 plane in the Laplace transform can be written as [6, 8]: 

LU = [}2 (S) Io ([}z) q> (~) ~Ko ([}~) d~ + Ko ([}r) q] (~) ~[o (N) d~ , (22)  
S o 

where 

V(s)=  d 

Switching to the original in (22) and utilizing the conventional rules of operational cal- 
culus give us 
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I 

~ fexp ( x (o~a2o 12 ) [  t 1 +  U(r, O, t ) =  _]/_.~/. a 4 ( l - - x ) \  ax / 

(23) x ] ~tx ~ ( r ~ + ~ )  ( ~ ) 
J Ob (~) ~ exp Io - -  d~. 

-+ 2(1 - -  x) 2~z-[/]--~") o 4a~xt 2a2xt 

The calculations require that we establish the analytic form of the function ~(r) or 
specify its tabulated values. 

The temperature distribution curves (Fig. 2) can be represented in the form rSexp(-~r 2) 
(~, [3 > 0). However, U = 0 with this sort of initial temperature distribution near the well 
bottom (r + 0), which is impossible. In order to avoid this and expand the integral over 

in Eq. (23), we represent the initial temperature distribution as the function 

@ (r) = B1 exp (--blr z) --  Bz exp (-- b2r2). (24)  

Substitution of the expression for ~(r) from (24) into (23) and appropriate transforma- 
tions give us 

U = _ _ m  
2 1 

a o  ~ 
al w v o-g-  ( -  1;+. B, .,f 

i=1 0 

( ~za2o ' xt 1 
• exp[ \ - -2- -~-  1 l - - - ~ ] e x p (  

y ~  + 2]/ 

bir z ) dx 
l+4bia~xt l+4bia~xt" 

• 

(25) 

It is best to reduce the latter integral to the following form for the calculations: 

where 

1 ~ 1 (26)  U(r, O, t) =-iy~ ~ x-2exp(- -x)[Baf l ( / ,  t, x)--B~f2(r, t, x)ldx, 

I exp( 1 f (x) = 1 + 4 b~a~ty (x) 1 + 4b~a2oty (x) ' 
2 

y (x) = 

1 +  1 + \--d~-~ / x 

The form of the function fi(r, t, x) is such that it changes very little when the 
variable of integration x is varied within the limits indicated. Such modification of the 
function enables us to apply the mechanical quadrature formula with weight x-I/2exp(-x) to 
(26); we can limit the number of points to two or three, obtaining 

1 n 

v(r, o, 0 =7~Ac~(r'~1 t, xo), (27) 

where ~(r, t, xK)=Blfl(r , t, x~)--B~2(g t, x~). The numerical values of A c and x c depend on the 
number of abscissas [13]. 

We will now consider a specific example and establish the specific form of r i.e., 
determine the values of B I, B 2, b I, and b 2. 

Preliminary calculations show that, if 15-20 kg of magnesium is utilized for each meter 
of formation thickness, the average temperature of the hole bottom zone is raised by about 
150-170~ from the initial formation temperature. The radius of solution penetration is of 
the order of 1.3 m if the porosity is m = 0.2. 
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The initial temperature for r > R c = 1.3 m consequently equals the original formation 

temperature, i.e., T O -T = 0, we can now compile the necessary conditions for determination 

of the coefficients: 

i. BI--B2=Tc--To when f"-~O. ( 28 )  

2. The average temperature in the hole bottom zone is: 

RC 
2 [ ( T - - T o )  r d r =  - -  ATav = - - ~  
Re 

B i B 2 

blR& b R& (29)  

We assume that 

A~av--O when r=Rc (30) 

in this case. 

3. The temperature distribution function has a maximum at some distance r = r0, so 
that: 

Bib1 exp (--  blr~) - -  B2b~ exp (--  b2r~) = O. (31)  

The coefficients sought are determined from Eqs. (28)-(31) on the basis of the experi- 
mental data, specifying r = 0.3 m, R c = 1.2 m, and T w = T O = 20~ at t = 0; the initial 
temperature distribution function then takes the form: 

m (r) = 0,97 exp (--  2,78F 2) - -  0,77 exp ( - -  24,4472), (32)  

where r = r0r. 

We obtain for the known parameters a 0 = 3.04 "10 -3 m3/h, a I = 1.365.10 -3 m3/h, r 0 = 
i m, and ~ = 0.815 m-l: 

~(r, t, x& -- 0 , 9 7  exp ( 2,78~ ~ 0,77 exp ( 24,44~ t 

~i(t,  Yc) = 1 -}- 4b~ag +yc(x) ,  (33)  

2 y~ (x) = 

1 @ ] /  1 q-0,0045 t 
xr 

S u b s t i t u t i n g  f rom (33)  i n t o  (27)  and l i m i t i n g  o u r s e l v e s  t o  t h r e e  t e r m s  n = 3 w i t h  
x l  = 0 . 1 9 0 1 6 ,  A z = 1 . 4 4 9 3 ,  x 2 = 1 . 7 8 4 5 ,  A 2 = 0 . 3 1 4 1 3 ,  x 3 = 5 . 5 2 5 3 ,  and A 3 = 0 .00906  g i v e s  us  
t h e  s p e c i f i c  form o f  t h e  t e m p e r a t u r e  d i s t r i b u t i o n  e q u a t i o n .  

E q u a t i o n  (27)  i s  u sed  t o  compute  U as  a f u n c t i o n  o f  r and t ,  and t h e  t e m p e r a t u r e  d i s t r i -  
b u t i o n  curves are plotted. 

Figure 3 gives plots for the dimensionless temperature versus r at different times. 
These curves show that, as time goes on, most of the heat obtained at r = 0.3 goes to environ- 
mental heating, so that the temperature in the hole bottom zone gradually equalizes. 

Figure 4 depicts temperature as a function of time for different distances from the well 
axis. Analysis of these curves enables us to establish the zone of thermal influence during 
formation thermochemical treatment as a function of the specific conditions in the hole bot- 
tom zone and the thermal effect on it. 

Our research results permit correct and timely assessment of normality of operation for 
wells exploiting formations with hard-to-extract crudes. 

NOTATION 

U, V, normed temperatures; a0, el, coefficients of thermal diffusivity for formation 
and environment; %0, %1, coefficients of thermal conductivity for formation and environment; 
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m, formation porosity; h, formation thickness, m; r w, well radius, m; ~, dimensionless 
time; r, dimensionless radius; 10(x), K0(x), zero-order Bessel functions of first and sec- 
ond kinds with imaginary argument; J0(x), zero'order Bessel function of first kind for 
real argument; LU, Laplace transformation; U, V, Laplace transforms of functions; S, 
Laplace transformation parameter; U, V, Hankel transforms of functions; p, Hankel trans- 
formation parameter; Ac, B I, B2, bz, b2, constant parameters; P0, density, kg/mS; co, cl, 
specific heat capacities, J/(kg.deg); T o , initial formation temperature, deg; T, current 
formation transformation, deg; Tw, hole bottom temperature, deg; Q, liquid volume delivery 
rate, m3/sec; r0, radius of hot front boundary, m; F, Froude number; q, amount of heat; R, 
profile radius; k, Constant parameter. 
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